news-details

News   Jan 14, 2019 | by Laura Elizabeth Lansdowne, Science Writer, Technology Networks

Breast cancer cell.

A method for fooling breast cancer cells into fat cells has been discovered by researchers from the University of Basel. The team were able to transform EMT-derived breast cancer cells into fat cells in a mouse model of the disease – preventing the formation of metastases. The proof-of-concept study was published in the journal Cancer Cell.

Malignant cells can rapidly respond and adapt to changing microenvironmental conditions, by reactivating a cellular process called epithelial-mesenchymal transition (EMT), enabling them to alter their molecular properties and transdifferentiate into a different type of cell (cellular plasticity).

Senior author of the study Gerhard Christofori, professor of biochemistry at the University of Basel, commented in a recent press release: "The breast cancer cells that underwent an EMT not only differentiated into fat cells, but also completely stopped proliferating.”

"As far as we can tell from long-term culture experiments, the cancer cells-turned-fat cells remain fat cells and do not revert back to breast cancer cells," he explained.

Epithelial-mesenchymal transition and cancer


Cancer cells can exploit EMT – a process that is usually associated with the development of organs during embryogenesis – in order to migrate away from the primary tumor and form secondary metastases. Cellular plasticity is linked to cancer survival, invasion, tumor heterogeneity and resistance to both chemo and targeted therapies. In addition, EMT and the inverse process termed mesenchymal-epithelial transition (MET) both play a role in a cancer cell’s ability to metastasize.

Using mouse models of both murine and human breast cancer the team investigated whether they could therapeutically target cancer cells during the process of EMT – whilst the cells are in a highly plastic state. When the mice were administered Rosiglitazone in combination with MEK inhibitors it provoked the transformation of the cancer cells into post-mitotic and functional adipocytes (fat cells). In addition, primary tumor growth was suppressed and metastasis was prevented.

Cancer cells marked in green and a fat cell marked in red on the surface of a tumor (left). After treatment (right), three former cancer cells have been converted into fat cells. The combined marking in green and red causes them to appear dark yellow. Credit: University of Basel, Department of Biomedicine

Christofori highlights the two major findings in the study: 

"Firstly, we demonstrate that breast cancer cells that undergo an EMT and thus become malignant, metastatic and therapy-resistant, exhibit a high degree of stemness, also referred to as plasticity. It is thus possible to convert these malignant cells into other cell types, as shown here by a conversion to adipocytes."

"Secondly, the conversion of malignant breast cancer cells into adipocytes not only changes their differentiation status but also represses their invasive properties and thus metastasis formation and their proliferation. Note that adipocytes do not proliferate anymore, they are called 'post-mitotic’, hence the therapeutic effect."

Since both drugs used in the preclinical study were FDA-approved the team are hopeful that it may be possible to translate this therapeutic approach to the clinic. 

"Since in patients this approach could only be tested in combination with conventional chemotherapy, the next steps will be to assess in mouse models of breast cancer whether and how this trans-differentiation therapy approach synergizes with conventional chemotherapy. In addition, we will test whether the approach is also applicable to other cancer types. These studies will be continued in our laboratories in the near future."

Journal Reference: Ronen et al. Gain Fat--Lose Metastasis: Converting Invasive Breast Cancer Cells into Adipocytes Inhibits Cancer Metastasis. Cancer Cell. (2019). Available at: https://www.cell.com/cancer-cell/fulltext/S1535-6108(18)30573-7 

Gerhard Christofori was speaking to Laura Elizabeth Lansdowne, Science Writer for Technology Networks.

Related Posts